Flexible Tethered Kite with Movable Attachment Points, Part I: Dynamics and Control

Gepubliceerd op:
2007
Gepubliceerd op:
augustus 5th, 2007
Last modified on april 30th, 2025 at 14:17
Abstract

Tethered kite technology is one potential means of harnessing energy available in high altitude winds. In an efficient and practical system, the kite is required to fly in cyclic patterns that maximize net power produced per cycle. At the same time, the tether length must be controlled to ensure the system does not expend more energy than it produces. This can be a challenging problem when the intermittency of the wind speed and direction, as well as unsteady wind components, are taken into account. This paper is the first of two that studies the dynamics and control of a flexible kite. In this part, a highly simplified dynamic model of the kite is derived based on a hinged, two-plate representation. This first approximation considers aerodynamic forces produced by the plates as a function of their instantaneous angle of attack. The plates are constrained to have the same yawing angle, but are unconstrained in pitch and roll. The combined pitch and roll of the system is controlled by means of moveable attachment points for the tether(s). Both stationkeeping and timevarying trajectories are considered, for which feedback control is applied for tracking.

AIAA-2007-6628, AIAA Modelling and Simulation Technologies Conference and Exhibit, Hilton Head, SC, USA, 20-23 August 2007.

Privacyoverzicht

Deze site maakt gebruik van cookies, zodat wij je de best mogelijke gebruikerservaring kunnen bieden. Cookie-informatie wordt opgeslagen in je browser en voert functies uit zoals het herkennen wanneer je terugkeert naar onze site en helpt ons team om te begrijpen welke delen van de site je het meest interessant en nuttig vindt.