Reference Design and Simulation Framework of a Multi-Megawatt Airborne Wind Energy System

Published in:
2021
Published on:
March 30th, 2021
Last modified on December 1st, 2021 at 15:13
Abstract

In this paper, we present the design and computational model of a representative multi-megawatt airborne wind energy (AWE) system, together with a simulation framework that accounts for the flight dynamics of the fixed-wing aircraft and the sagging of the tether, combining this with flight control and optimisation strategies to derive the power curve of the system. The computational model is based on a point mass approximation of the aircraft, a discretisation of the tether by five elastic segments and a rotational degree of freedom of the winch. The aircraft has a wing surface area of 150 m2 and is operated in pumping cycles, alternating between crosswind flight manoeuvres during reel out of the tether, and rapid decent towards the ground station during reel in. To maximise the net cycle power, we keep the design parameters of the aircraft constant, while tuning the operational and controller parameters for different wind speeds and given contraints. We find that the presented design can generate a net cycle power of up to 3.8 megawatts.

Journal of Physics Conference Series, Vol. 1618, pp. 032020, 2020. doi:10.1088/1742-6596/1618/3/032020.

Job Tasks

Job Profile

We are crowdfunding!